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A B Harris5, N Rogado6, R J Cava6, F Yen7, R P Chaudhury7 and
B Lorenz7

1 NIST Center for Neutron Research, National Institute of Standards and Technology,
Gaithersburg, MD 20899, USA
2 Department of Materials Science and Engineering, University of Pennsylvania,
Philadelphia, PA 19104, USA
3 Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
4 Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC), Campus UAB,
E-08193 Bellaterra, Spain
5 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia,
PA 19104, USA
6 Department of Chemistry and Princeton Materials Institute, Princeton University,
Princeton, NJ 08544, USA
7 Department of Physics and TCSUH, University of Houston, Houston, TX 77204, USA

E-mail: taner@nist.gov

Received 13 May 2008, in final form 3 July 2008
Published 9 October 2008
Online at stacks.iop.org/JPhysCM/20/434214

Abstract
We present a detailed study of the zone-center phonons and magnetoelectric interactions in
Ni3V2O8. Using combined neutron scattering, polarized infrared (IR) measurements and
first-principles LDA + U calculations, we successfully assigned all IR-active modes, including
eleven B2u phonons which can induce the observed spontaneous electric polarization. We also
calculated the Born-effective charges and the IR intensities which are in surprisingly good
agreement with the experimental data. Among the eleven B2u phonons, we find that only a few
of them can actually induce a significant dipole moment. The exchange interactions up to a
cutoff of 6.5 Å are also calculated within the LDA + U approach with different values of U for
Ni, V and O atoms. We find that LSDA (i.e. U = 0) gives excellent results concerning the
optimized atomic positions, bandgap and phonon energies. However, the magnitudes of the
exchange constants are too large compared to the experimental Curie–Weiss constant, �.
Including U for Ni corrects the magnitude of the superexchange constants but opens a too large
electronic bandgap. We observe that including correlation at the O site is very important to get
simultaneously the correct phonon energies, bandgap and exchange constants. In particular, the
nearest and next-nearest exchange constants along the Ni-spine sites result in incommensurate
spin ordering with a wavevector that is consistent with the experimental data. Our results also
explain how the antiferromagnetic coupling between sublattices in the b and c directions is
consistent with the relatively small observed value of �. We also find that, regardless of the
values of U used, we always get the same five exchange constants that are significantly larger
than the rest. Finally, we discuss how the B2u phonons and the spin structure combine to yield
the observed spontaneous polarization. We present a simple phenomenological model which
shows how trilinear (and quartic) couplings of one (or two) phonons to two spin operators
perturbatively affects the magnon (i.e. electromagnon) and phonon energies.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Recent studies have identified a family of multiferroics
which display a phase transition in which there develops
simultaneously long-range incommensurate magnetic and
uniform ferroelectric order. Perhaps the most detailed studies
have been carried out on the systems Ni3V2O8 (NVO) [1–4]
and TbMnO3 (TMO) [5, 6]. For a review, see [7]. This
phenomenon has been explained [3] on the basis of a
phenomenological model which invokes a Landau expansion in
terms of the order parameters describing the incommensurate
magnetic order and the order parameter describing the uniform
spontaneous polarization. Already from this treatment it was
clear that a microscopic model would have to involve a trilinear
interaction Hamiltonian proportional to the product of two
spin variables and one displacement variable. Furthermore,
the symmetry requirements of the phenomenological model
would naturally be realized by a proper microscopic model.
Accordingly, in this paper we compare detailed combined
neutron scattering and polarized infrared studies to first-
principles calculations of the optical phonons of NVO and
thereby identify which of the experimentally observed phonons
have the correct symmetry to induce a dipole moment. We also
calculated all possible exchange parameters up to a separation
of 6.5 Å and find that only a few of them are significantly large.
The aim of our study is to determine which of the zone-center
phonons are relevant and which superexchange parameters
are important to explain both the observed magnetic structure
and also the spontaneous polarization in NVO. This paper
therefore sets the stage for a separate quantum calculation of
the derivatives of the exchange tensor with respect to atomic
displacements.

Briefly, this review is organized as follows. In section 2
we give an overview of the crystal and magnetic structure of
NVO. In section 3 we discuss the first-principles calculations
of the zone-center phonons and identify those phonons which
transform like a vector and thus which are candidates to
produce a spontaneous polarization. In this section we also
present the neutron scattering measurements of the phonon
density of states (DOS) and polarized IR data. The calculations
are in good agreement with both neutron and IR data. Next
in section 4 we present the calculations of the superexchange
parameters up to 6.5 Å cutoff. Then in section 5 we make
some qualitative remarks about the spin–phonon interactions
and how such an interaction affects the observed phonon
and magnon energies at the phase transition. Finally, our
conclusions are summarized in section 6.

2. Crystal and magnetic structure of NVO

NVO has an orthorhombic structure [8] with space group
Cmca [9]. It consists of buckled Kagomé layers of
edge-sharing NiO6 octahedra separated by nonmagnetic VO4

tetrahedra. Table 1 summarizes fractional coordinates of
the six crystallographically inequivalent sites (i.e. Wyckoff
positions) in the conventional unit cell. Each such set of
Wyckoff positions forms a so-called Wyckoff orbit (WO).
There are two WOs of the Ni atoms, the first consisting of

the two Ni(c) (a) sites (which we call ‘cross-tie’ sites) and the
second consisting of the four Ni(s) (e) sites (which we call
‘spine’ sites). The four V (f) sites comprise the third WO
and the oxygen sites are distributed into three WOs, an (f)
WO containing four O(1) atoms, an (f) WO containing four
O(2) atoms and a (g) WO containing eight O(3) atoms. The
letters a, e, f and g classify the site symmetry according to the
convention of [9]. The locations of these sites are specified
in the second column of table 1 and some are also shown
in figure 1 (left). Note that there are two formula units of
NVO per primitive unit cell or four NVOs per conventional
(a × b × c) unit cell. The Ni sites form buckled planes
which have the connectivity of a Kagomé lattice and three such
adjacent planes are shown in figure 1 (right). There one sees
that the Ni(s) sites (which we call spine sites and which are
assigned sublattice numbers s1, s2, s3 and s4) form chains along
the a direction. The Ni(c) sites (which we call cross-tie sites
and which are assigned sublattice numbers c1, c2, etc) occupy
inversion symmetric sites with bonds to nearest-neighboring
spine sites forming a cross tie.

NVO is a magnetic insulator whose magnetic properties
are associated with the spin-1 Ni2+ ions. The buckling of the
quasi-Kagomé planes gives rise to a high degree of anisotropy
and leads to an interesting and very rich magnetic phase
diagram which is characterized by at least three magnetic
phase transitions [1, 2, 4]. At high temperatures the system
is paramagnetic. When T is lowered through the value TPH ≈
9.1 K, an incommensurate phase appears (the high-temperature
incommensurate or HTI phase) in which the Ni spins on
the spine chains are oriented very nearly along the x axis
with an amplitude modulation whose wavevector lies along
î . The axes are denoted either a, b and c, or x , y and z and
the corresponding unit vectors are denoted î , ĵ and k̂. As
the temperature is further lowered through the value THL ≈
6.3 K transverse order appears at the same incommensurate
wavevector and also order appears on the cross-tie sites. We
call this phase the low-temperature incommensurate or LTI
phase. Within the experimental uncertainty, these two ordering
transitions are continuous. As the temperature is lowered
through the value TLC ≈ 4 K, a discontinuous transition occurs
in which a commensurate antiferromagnetic phase appears. In
this phase, antiferromagnetism results from the arrangement
of spins within the unit cell in such a way that the magnetic
unit cell remains identical to the paramagnetic unit cell. The
magnetic phase diagram for NVO is extremely anisotropic with
applied field [2, 4] and the complete details of the spin ordering
transition in NVO are discussed in [4].

From our previous studies, we find that the complex phase
diagram of NVO is basically driven by competing nearest-
neighbor (NN) and second NN (SNN) isotropic Heisenberg
interactions, denoted J1a and J2a within each chain of spine
spins. Because the NiO6 octahedra are edge-sharing, the
NN Ni–O–Ni bond angle is close to 90◦ so the NN and
SNN Ni–Ni interactions are similar in strength [10]. A mean
field treatment [11, 12] indicates that, for J2a > |J1a|/4,
the spine Hamiltonian is minimized by a spin amplitude
which is modulated with the wavevector q = q1î , which
satisfies cos(q1a/2) = −J1a/(4J2a). Putting aside the

2



J. Phys.: Condens. Matter 20 (2008) 434214 Review Article

Figure 1. Left: the crystal structure of NVO in its primitive cell. Some of the atoms are not shown for clarity. Right: the buckled Kagomé
lattice of Ni sites in NVO. The Ni(s) spine (S) and Ni(c) cross-tie (C) spins are labeled as si and ci , respectively. The buckling is represented
by the offset δ = 0.13b of the spine sites. The cross-tie sites have zero offset and are located at y = 0 and b/2.

Table 1. The optimized atomic positions using the experimental lattice parameters (a = 5.922 Å, b = 11.372 Å and c = 8.225 Å) in the
conventional cell, symmetry decomposition of the Wyckoff sites, and the calculated Löwdin and 3 × 3 Born-effective charge tensors for the
six symmetry independent atoms in NVO. Note that the Born-effective charge tensors have large off-diagonal elements. Also the averages of
the diagonal elements of the Born tensors are −1.9e, +4.6e and +2.19e for O, V and Ni, respectively. These numbers are very close to the
formal charges of these ions and much larger than the calculated Löwdin point charges.

Atoms Position/decomposition Löwdin charge Born eff. charge

(8f) (0, 0.2487, 0.2327) −0.763 0.004 −0.005
O(1) Au + 2B1u + 2B2u + B3u −0.62e 0.000 −3.645 1.424

2Ag + B1g + B2g + 2B3g 0.000 1.575 −1.190

(8f) (0, 0.001, 0.2453) −1.008 0.004 −0.009
O(2) Au + 2B1u + 2B2u + B3u −0.68e 0.000 −3.536 2.135

2Ag + B1g + B2g + 2B3g 0.000 1.955 −2.664

(16g) (0.2634, 0.1194, 0.0014) −3.071 −0.371 1.726
O(3) 3Au + 3B1u + 3B2u + 3B3u −0.59e −0.430 −0.633 0.178

3Ag + 3B1g + 3B2g + 3B3g 1.833 −0.123 −2.089

(8f) (0, 0.3765, 0.1190) 4.308 0.000 −0.018
V(1) Au + 2B1u + 2B2u + B3u 1.18e 0.000 5.058 0.464

2Ag + B1g + B2g + 2B3g 0.000 0.201 4.371

(4a) (0, 0, 0) 3.394 −0.005 −0.007
Ni(c) Au + 2B1u + 2B2u + B3u 0.9e 0.000 1.429 −0.633

0.000 −0.294 2.364

(8e) (0.25, 0.1310, 0.25) 1.865 −0.001 0.076
Ni(s) Au + 2B1u + B2u + 2B3u 0.86e 0.000 2.567 −0.001

Ag + 2B1g + B2g + 2B3g −0.689 0.014 2.139

small T dependence of q , we deduce from the experimental
value [4] (q ≈ 0.27a∗)8 in the LTI and HTI phases that
J1a ≈ 2.6J2a . This relation will form a strong constraint on
our first-principles calculations of the exchange parameters.
Experimentally, it was also determined [1, 4] that the Curie–
Weiss constants, �α for a, b and c directions, are 17.0, 19.0
and 20.0 K, respectively. We will use the average � ≈ 18.7 K
as a second experimental constraint on our calculated exchange
parameters9.

Perhaps surprisingly it was found that ferroelectricity
observed in NVO coincides with the existence of LTI order,

8 To connect this to theory, one must set q1a/2 = (1 − 0.27)π as explained
below equation (17) in [4].
9 Note that, although � is subject to experimental uncertainty, the expression
given in equation (73) of [4] is exact (i.e. not subject to fluctuation corrections)
for the exchange model.

and this behavior was explained by a phenomenological
model based on a Landau expansion in powers of order
parameters describing ferroelectricity and those needed to
describe the magnetic ordering of the HTI and LTI phases [3].
This phenomenological theory elucidates the symmetry of
the magnetically induced ferroelectric state. To develop
an analogous microscopic theory, one needs to know more
about the zone-center phonons in NVO as well as the major
superexchange interactions that can couple to the right phonon
to induce the observed spontaneous polarization. In the next
section, we first discuss the phonons in NVO from combined
inelastic neutron scattering (INS), polarized IR measurements
and first-principles computations. Next, we determine the
important superexchange constants in NVO and discuss how
they couple with the zone-center phonons.
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Figure 2. Left: the observed and calculated INS spectra with U = J = 0. Note that the calculation with full optimization (i.e. both lattice
constant and atomic positions are optimized) agrees with the neutron data very well. Right: the variation of the calculated INS spectrum with
different values of U used in LDA + U . The correlation at the oxygen site has almost no effect on the INS spectrum while it corrects the
spin-exchange parameters significantly (see the text). The U at the vanadium site affects the calculated INS spectrum very badly, suggesting
U(V) should be zero.

3. Zone-center phonons; neutron scattering,
polarized IR measurements and first-principles
calculations

In this section we present first-principles calculations of the
phonons and compare our results with the INS and polarized
IR measurements [13–15]. We are able to assign all the
observed IR modes and identify the phonons which have the
correct symmetry to induce a spontaneous polarization. From
calculated Born-effective charges, we also estimate the local
distortion which gives rise to the observed dipole moment.

The first-principles total energy and phonon calculations
were performed by spin-polarized generalized gradient
approximation (GGA) [16] to density functional theory
(DFT) [17] as implemented in the code VASP [18]. We used
the projector augmented-wave (PAW) method [19] to represent
the ionic cores and 400 eV for the plane-wave cutoff energy.
Due to well known limitations of LDA in calculations of
electronic and magnetic ground-state properties of strongly
correlated materials such as transition metal oxides, we used
the so-called ‘LDA + U ’ method [20] in our calculations.
The LDA + U method presumes that an appropriate set of
local orbitals such as 3d can be identified. Then a strong
intra-atomic interaction is introduced and treated in a Hartree–
Fock manner. The main result is the splitting apart of
occupied and unoccupied states within the local orbitals in
which the correlations are considered. The strong intra-atomic
interactions used in the LDA + U method in a Hartree–Fock
manner is characterized by the e–e interaction, U , which
can be written in terms of Slater’s integrals F0, F2, F4 and
F6 (f-electrons). However, in LDA + U calculations, one
does not use the atomic values of the Slater’s integrals which
would lead to a large overestimate of the true e–e interaction
since in solids the Coulomb interaction is usually screened
(especially F0). In practice, these integrals are therefore often

treated as parameters, i.e. adjusted until one gets results that
are in good agreement with experimental values. They are
normally specified in terms of the effective on-site Coulomb
and exchange parameters, U and J (i.e. for p-electrons, U =
F0, J = F2/5 and for d-electrons U = F0, J = 1+0.625

14 F2).
For transition metal oxides, the typical values are 1–7 eV for
U and 0.2–1 eV for J . From extensive studies on cuprates, it
was also realized that the oxygen p-orbital correlations could
also be very important in addition to d-orbital correlations [21].
Hence, in our study, in addition to Ni d-orbitals, we also
consider correlation effects at the oxygen sites and found them
to be very important. We vary U as a free parameter to see how
it affects the phonon spectrum as well as the superexchange
interactions that we discuss in the next section.

In our calculations, we considered the primitive unit
cell of the NVO which contains 26 atoms. The lattice
parameters and the atomic positions were all optimized to
eliminate the forces down to 0.005 eV Å

−1
. The optimized

positions with the experimental lattice parameters are listed in
table 1, which are in excellent agreement with the experimental
positions (i.e. within 0.01 Å). Using the optimized structure,
we next calculated the zone-center phonons from the finite
displacement method and the corresponding INS one-phonon
spectrum as described in [22].

Figure 2 shows the measured INS spectrum from an
NVO powder sample. The INS measurements were performed
using the filter analyzer spectrometer (FANS) located on
beamline BT4 at the NIST Center for Neutron Research [23].
For energies above 40 meV, a Cu(220) monochromator,
surrounded by 60′–40′ horizontal collimation and combined
with a cooled polycrystalline beryllium filter analyzer, was
used. For the low-energy spectrum (i.e. E < 40 meV), a
graphite (PG) monochromator with 20′–20′ collimation was
used. The relative energy resolution of the FANS instrument
is approximately 5% in the energy range probed. The powder
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Ni3V2O8 sample (about 20 g) was held at 8 K with a helium-
filled aluminum can using a closed-cycle He3 refrigerator.

The measured INS spectrum and the calculations for
different values of U are compared in figure 2. The agreement
of the calculations to the observed spectrum is quite good,
giving further confidence that the first-principles calculations
capture the main physics. It also suggests that the phonon
modes in NVO have small dispersion with wavevector. This
is because the INS spectrum reflects an average over a large
range of Q but nevertheless agrees well with the calculations
which are only for Q = 0. The phonon spectrum basically
consists of three well-separated energy bands. The first band is
between 15–60 meV and is due to rotation/translation (low-
energy portion) and small distortion of the NiO6 octahedra
(high-energy portion). The second phonon band is between
75–85 meV. It involves mainly the vibration of the O(2) along
the V–O bond. Since all oxygen atoms are also connected
to Ni atoms, these modes cannot be described as purely V–
O bond stretching because they always have some Ni–O bond
stretching as well. Finally, the third phonon band lies in the
energy range between 90 and 105 meV. These modes are very
similar to the second band, i.e. oxygen vibration along the V–
O bond, but they are also mixed with O–Ni–O bending and
therefore occur at higher energies.

The right panel in figure 2 summarizes the effect of
different values of U on the calculated phonon spectrum. From
this figure, it is clear that we do not need non-zero U(Ni)
in order to get good agreement with the experimental data.
This is also consistent with the measured electronic bandgap
of NVO. With U(Ni) = 0, we have a bandgap of about
0.7 eV, which compares nicely with the experimental value of
≈0.5 eV [14]. However, as we will see in the next section,
the calculated values of the exchange parameters are very
large when U(Ni) = 0. Taking non-zero U(Ni) improves
the exchange parameters but then the phonon energies above
80 meV become much larger than the neutron measurement
indicates. The U(Ni) also opens a large gap (for example,
for U(Ni) = 5 eV, the gap is found to be about 2 eV)
which is not consistent with experiment [14]. Accordingly,
we also studied the effect of correlations at V and O sites
by taking non-zero U(V) and U(O). The bottom phonon
spectrum in figure 2 clearly indicates that U(V) softens the
VO stretching significantly, yielding very low-energy modes,
totally disagreeing with the observed spectrum. Hence, based
on this result we conclude that U(V) should be taken as zero.
In contrast, the oxygen U is found to have almost no effect
on the phonon spectrum. It also does not open the bandgap.
However, as we will see in section 4, U(O) improves the
magnetic exchange parameters significantly and in particular
it is the key parameter to get the right ratio for J1a/J2a .

In order to identify the phonon modes that can induce
the observed dipole moment along the b axis in NVO, we
need to know the symmetry properties of each phonon. The
symmetry analysis of the zone-center phonons was carried out
in [13]. Below we briefly repeat the symmetry analysis of the
phonons and then compare our results with the polarized IR
measurements on single-crystal NVO samples.

Table 1 shows the symmetry decomposition for the six
Wyckoff sites present in NVO. There are 26 atoms in the

primitive unit cell and the representation �u induced by the
vector space of these 26 × 3 = 78 atomic displacements has
the decomposition

�u = 10Ag + 8Au + 8B1g + 13B1u + 7B2g + 12B2u

+ 11B3g + 9B3u. (1)

The vector representations which transform like x , y and z
are modes of symmetry B3u, B2u and B1u, respectively, and
these are the only ones responsible for IR activity. For the
observed spin structure, the spontaneous polarization must lie
along the b axis [3] and this polarization must result from
the condensation of one or more of the twelve B2u symmetry
modes [13]. One of the these twelve modes is acoustic (i.e. all
atoms move uniformly along the b axis) and will not be
considered any further.

In addition to mode energies, we also calculated the dipole
moment per unit cell P(n)

y of each mode from the effective
Born-charge tensor which is listed in table 1. To estimate
the polarization vector of the nth mode, we write the atomic
displacement in terms of the eigenvectors O(n)

τ,α as

uτ,α =
∑

n

O(n)
τ,α M−1/2

τ Qn

=
∑

n

O(n)
τ,α

√
h̄

2Mτ ωn
(a†

n + an), (2)

where a†
n is a phonon creation operator. A crude estimate for

the polarization vector of the nth mode can then be obtained
from the following formula:

P(n)
rms,α = 1

	uc

∑

τ,β

Z∗
α,β(τ )O(n)

τ,β QrmsM−1/2
τ , (3)

where 	uc is the volume of the unit cell and Qrms = √
h̄/2ω is

the average zero-point fluctuation. The Z∗
α,β(τ ) is the effective

Born-charge tensor that we calculated using the Berry-phase
method [24]. After having calculated the effective Born
charges, it is straightforward to calculate the IR intensities.

Near-normal reflectance of Ni3V2O8 single crystals was
measured at 300 K over a wide energy range (2.5 meV–
6.5 eV) using three different spectrometers as described
previously [14, 15]. The infrared reflectance for light polarized
along the a, b and c directions is shown in figure 3. The
spectral resolution was 0.5 cm−1 in the far- and middle-
infrared. Polarizers were employed, as appropriate. Data along
the a and c directions were collected from the large, shiny
natural growth face of a crystal [14, 15]. A cut crystal exposing
the b axis was also employed. Here, surface quality issues
broaden phonon linewidths and cause slight leakage of a- and
c-related features into the spectrum. Despite these challenges,
b-polarized phonon positions are highly reliable10.

Figure 4 displays the optical conductivity, σ1, extracted
from the reflectance measurements shown in figure 3 by a
Kramers–Kronig analysis [25]. We also show the calculated
intensities from both the Born-effective charges and the sim-
pler Löwdin charges. Not surprisingly, although the agreement

10 We elected not to polish to avoid additional damage or polishing-induced
stress on the crystal.
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Table 2. Comparison of calculated (cal.) and experimental (exp.) mode energies (meV) in NVO. The calculated rms dipole moment, Prms, is
shown in parentheses (in 10−4 C m−2). The IR intensity is proportional to P2

rms. The relative intensities of the observed modes are also given
in parentheses. The abbreviations, vs, s, m, w and vw indicate very strong, strong, medium, weak and very weak, respectively.

B3u(a) B2u(b) B1u(c)

No. Cal. Exp. Cal. Exp. Cal. Exp

1 18.39 (13.6) Not obs. 21.32 (9.0) 21.58 (vw) 17.78 (1.0) Not obs.
2 24.45 (33.7) 25.15 (vw) 24.33 (0.8) 24.90 (w) 22.97 (2.6) 23.27 (vw)
3 30.13 (85.7) 29.77 (m) 27.40 (18.3) 27.83 (w) 26.48 (8.1) 27.12 (vw)
4 38.88 (10.0) 38.34 (vw) 36.06 (76.3) 36.01 (m) 31.37 (69.9) 31.89 (vw)
5 41.85 (35.4) 41.59 (vw) 39.72 (1.3) 40.77 (w) 37.47 (0.7) 37.63 (vw)
6 46.60 (42.7) 45.93 (w) 40.52 (65.4) 40.11 (m) 39.02 (53.3) 40.00 (w)
7 52.68 (29.3) 52.54 (w) 50.24 (19.4) 50.51 (w) 41.05 (3.25) Not obs.
8 100.22 (161) 97.55 (vs) 55.68 (12.3) 56.16 (w) 46.62 (45.7) 46.31 (w)
9 — — 83.82 (176) 78.19 (s) 56.44 (3.3) Not obs.

10 — — 102.81 (64.5) 100.42 (m) 82.51 (139) 77.95 (s)
11 — — 110.62 (57.0) 109.3 (m) 101.19 (65.0) 97.55 (m)
12 — — — — 103.34 (100) 102.35 (m)

Figure 3. Room temperature reflectance spectra of Ni3V2O8 for light
polarized along the a, b and c directions.

between Löwdin intensities and IR data is poor, we have excel-
lent agreement between the Born intensities and the IR data.
The calculated and measured phonon mode energies are com-
pared in table 2, and again the agreement is quite good.

As we can see from figure 4, half of the B2u modes induce
relatively small dipole moments. This is due to the fact that,
for these phonons, atoms mainly oscillate along the c axis and
the b component of the polarization is only a second-order
effect [13]. However for the other half (which were labeled in
figure 4), the motion is mainly along the b axis and therefore
the induced dipole moment is significant. Animations of these
modes and more information can be obtained at [26]. Figure 5
shows the most important B2u modes which induce large dipole
moment along the b axis. In particular, we note that the
b9 mode around 80 meV induces a significantly large dipole
moment and probably it is the mode which is most responsible
for the observed spontaneous polarization in NVO. This mode

(a)

(b)

(c)

Figure 4. Room temperature optical conductivity of Ni3V2O8 (black)
for light polarized along the a and c directions (from [14]) and along
the b direction (this work), extracted from reflectance measurements
by a Kramers–Kronig analysis. For better visualization, in panels (a)
and (c) the intensities of high-energy modes (above 65 meV) were
reduced by a factor of three. The calculated IR intensities from
Born-effective charges (heavy blue line) and Löwdin charges (light
red line) are also shown. The modes for E ‖ b are numbered as in
table 2. The calculations were for U(Ni) = 5.0 eV and
J (Ni) = 1.0 eV, which overestimate the high-energy modes by about
3–5%. The calculated IR intensities are plotted as Gaussians with
widths that roughly match the observed spectrum.

(i.e. b9) is a very simple mode where the O(2) oxygens oscillate
along the V–O bond as shown in figure 5. The other two high-
energy modes, b10 and b11, are very similar to the b9 mode. In
the b10 mode, O(1) atoms oscillate along the V–O bond and at
the same time there is O–Ni(c)–O bond bending as shown in
figure 5. In the highest-energy mode, b11, in addition to the
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o2

Mode b9 Mode b10

Mode b11 Mode b4

a
b

Ni

Ni

O

Modes:
b9,b10 ,b11 Ni

Ni

O

Modes:
b4,b6

Figure 5. Some of the B2u phonon modes which induce large dipole
moment along the b axis. The last two panels show schematically the
effect of the modes on the Ni–O–Ni bond angle.

main V–O bond stretching, we now have two O–Ni–O bond
bending and therefore the mode energy is much higher. In
summary, the common factor in modes, b9, b10 and b11 is that
one of the two oxygens along the Ni-spine chain oscillates
along the V–O bonds. This seems to be the key mode that
induces very large dipole moment along the b axis. Finally, the
modes b4 and b6 induce dipole moments which are about 1/16
of the dipole induced by the mode b9. One of these two modes
is shown in figure 5 where both of the oxygens which make
the Ni-spine chain oscillate along the Ni–O bond. The last
two panels in figure 5 show schematically how the Ni–O–Ni
bond angles are affected by the b9, b10, b11 and b4, b6 modes,
respectively. For modes b9, b10 and b11, we note that only one
of the Ni–O–Ni bond angles (near 90◦) changes and therefore
one expects that these modes will have a significant effect on
the superexchange path that is mediated through the Ni–O–Ni
path. However, for modes b4 and b6, we note that one of the
Ni–O–Ni bond angles increases while the other Ni–O–Ni bond
angle decreases and therefore at first order we do not expect
that these modes can have a significant effect on the exchange
parameters.

In conclusion, we have identified one major mode, i.e. b9,
which induces the largest dipole moment along the b axis. It
also has a direct effect on the Ni–O–Ni bond angle (only one of

them) along the Ni-spine chain and therefore it is expected to
couple with the magnetic interactions between Ni-spine spins.

Finally, we discuss what kind of distortion is needed
in order to induce the experimentally observed spontaneous
polarization whose magnitude is about Pexp = 1.25 ×
10−4 C m−2. We note that this induced polarization is much
smaller than the calculated rms dipole moment (Prms ∼
176.0 × 10−4 C m−2) assuming the polarization is induced by
the b9 mode. This suggests that the local distortion should
be of the order of Qdistortion = Pexp

Prms
Qrms = 1.25

176.0
1.44√
83.82

≈
0.001 Å. This is quite a small distortion and would be very
difficult to observe directly by neutron powder diffraction.
However, variable temperature infrared measurements may
have the needed sensitivity to probe local structural changes
in the HTI, LTI and C phases of NVO.

4. Magnetic interactions

We now discuss our first-principles calculations of the
superexchange interactions present in NVO. Experimentally
we have two strong constraints on the exchange interactions
in NVO. The first one is the ratio between NN and SNN
interactions along the Ni-spine chain. This ratio, i.e. J1a/J2a ,
should be around 2.6, a value required to obtain the successive
magnetic phase transitions with incommensurate structure
observed in NVO. The second constraint is the Curie–Weiss
constant, which is 18.7 K. As we will see below, the computed
superexchange constants satisfy this constraint only if we have
on-site U at an oxygen site. Having Ni(U ) also gives results
that are somewhat consistent with these two constraints but
then the electronic bandgap in the DOS is too large.

We developed a systematic approach where the exchange
parameter between spin-i and spin- j is obtained from the
total energies of a reference magnetic configuration and those
configurations obtained by flipping the spins i and j one at
a time and simultaneous flipping of both spins. From these
four energies, it is possible to obtain the exchange constant
between spin i and j . We note that here we are interested in the
isotropic exchange interactions. We also do not consider spin–
orbit interactions in our calculations. Hence all calculations are
done for collinear spin configurations.

In order to extract superexchange interactions up to a
large cutoff distance, we calculated the total energy for various
periodic spin configurations based on an arbitrary alignment of
the z components of spin (Sz = ±1) with a 2 × 1 × 1 supercell
of the conventional cell of NVO which contains 112 atoms.
Since the spin configuration is the same from one supercell to
the next one we may write the total energy E1 as

E1 = E0 + 1
2

∑

R

∑

k,l

J (0, k; R, l)Sk(0)Sl(R)

= E0 + 1
2

∑

k,l

K (k, l)Sk Sl , (4)

where S(n, R) ≡ Sn is the spin of the nth ion in the
supercell at R and because of periodicity K (k, l) = K (l, k) ≡∑

R J (k, 0; l, R). It is obvious that we can only expect to
determine K (k, l) and not the individual J ’s. However, since
the supercell is reasonably large, we can identify the K ’s with
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Table 3. The calculated magnetic interactions for all Ni pairs up to a cutoff distance of 6.5 Å as a function of U and J used in LDA + U . The
last row shows the Curie–Weiss constant, which was experimentally determined to be 18.7 K [1, 4]. The ratio J1a/J2a for each case is shown
on the third row. The experimental value for J1a/J2a is 2.6 [2, 4]. The spin labels are shown in figure 1. The last column (U(Ni) = 1.5 eV,
J (Ni) = 1 eV and U(O) = 4.0 eV) gives the best agreement with the experimental data.

J Dist. U = 0 U = 1.5 U = 5 U = 5 U = 6 U = 7 U = 8 U(O) = 4 U(O) = 4
(meV) (Å) J = 0 J = 1 J = 0 J = 1 J = 1 J = 1 J = 1 J (O) = 0 Ni: 1, 1.5a

J1a (s1s2) 2.961 5.73 3.53 1.24 1.16 0.85 0.62 0.45 2.96 1.71
J2a (s1s3) 5.922 1.44 0.93 0.37 0.37 0.28 0.21 0.15 1.19 0.76
J1a/J2a 3.98 3.81 3.32 3.15 3.05 2.99 3.03 2.48 2.25
J (s1s5) 4.938 −2.24 −1.13 −0.50 −0.43 −0.33 −0.25 −0.19 −2.36 −1.17
J (s5s9) 5.062 1.86 1.25 0.47 0.50 0.38 0.30 0.22 1.5 1.02
J (s5s10) 5.865 0.68 0.37 0.09 0.10 0.07 0.05 0.03 0.55 0.30
J (s1s10) 6.411 −0.22 −0.11 −0.05 −0.05 −0.04 −0.03 −0.03 −0.20 −0.09
J (s1s6) 5.758 −0.09 0.03 −0.01 −0.01 −0.02 −0.02 −0.02 0.06 0.02
J (s1s9) 5.686 −0.08 −0.03 −0.01 −0.02 −0.01 −0.01 −0.01 −0.08 −0.02

J (s1c1) 2.932 3.45 1.59 0.52 0.38 0.27 0.20 0.14 1.34 0.28
J (s1c5) 4.914 −1.78 −0.78 −0.36 −0.28 −0.22 −0.17 −0.13 −1.92 −0.85
J (s2c1) 5.112 0.13 0.19 0.01 0.05 0.03 0.02 0.01 −0.11 0.07

J (c1c3) 5.068 −0.25 0.05 0.03 0.05 0.04 0.03 0.03 −0.43 −0.05
J (c1c2) 5.922 0.24 0.13 −0.04 −0.01 −0.03 −0.03 −0.02 0.26 0.16
J (c1c5) 6.411 0.02 0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.01

Curie–Weiss � (K) 116.4 74.6 20.7 20.3 14.1 7.9 6.3 24.3 18.5

a U(Ni) = 1.5 eV and J (Ni) = 1 eV.

the J at the minimal separation. It is also obvious that we can
only hope to determine K (i, j) for i 
= j , since the energy
involving K (i, i) depends on (Si )

2 = 1 since Si = ±1 for
Ni spins. To determine K (i, j) for i 
= j we calculate four
total energies, E1 and the other three corresponding energies,
when we independently change the sign of Si and Sj . When
we change the sign of Si we get

E2 = E0 + 1
2

∑

k,l

K (k, l)Sk[1 − 2δi,k]Sl[1 − 2δi,l ], (5)

where δn,m = 1 if n = m and is zero otherwise. Likewise when
we change the sign of Sj we get

E3 = E0 + 1
2

∑

k,l

K (k, l)Sk[1 − 2δ j,k]Sl[1 − 2δ j,l], (6)

and when we change the sign of both spins i and j we get

E4 = E0 + 1
2

∑

k,l

K (k, l)Sk[1 − 2δi,k][1 − 2δ j,k]Sl

× [1 − 2δi,l][1 − 2δ j,l]. (7)

Then we construct the quantity X = E1 − E2 − E3 + E4 to get

X = 1
2

∑

k,l

K (k, l)Sk Sl [2δi,k + 2δi,l − 4δi,kδi,l]

× [2δ j,k + 2δ j,l − 4δ j,kδ j,l]. (8)

Since we require that i 
= j , this gives

X = 4 K (i, j)Si S j , (9)

from which we can extract the value of K (i, j). If the supercell
is large enough, one can keep only the interactions between the
nearest-neighboring supercell images of the spins and therefore
the calculated exchange parameter can be attributed to spin
interaction between the closest pairs of spins of types i and

j . We also note that there are cases where spin j is at the mid-
point between spin Si (0) and one of its images at Si (R). In
that case, the calculated superexchange constant is twice Ji j .
Similarly there are cases where the spin j is at a point where it
interacts equally with four images of the spin i . In those cases,
the calculated J is four times Ji j .

Table 3 summarizes our results for all possible exchange
constants up to a cutoff distance of 6.5 Å for different on-
site Coulomb repulsion U and Coulomb exchange J (which
should not be confused with the superexchange constants).
Usually the net effect in LDA + U is to replace U by (U − J ).
We note that, for U(Ni) = 0, the superexchange parameters
are too large (see the Curie–Weiss constant). Also the ratio
J1a/J2a is too large (i.e. for U(Ni) = 0, the ratio is 3.98,
but experimentally is 2.6). Increasing U(Ni) improves the J ’s.
The ratio goes down to 3.0 and saturates there. From the Curie–
Weiss constant, the best solution seems to be around U(Ni) =
5.0 eV and J (Ni) = 1.0 eV. These numbers are typical for Ni-
based oxide materials. However, the problem is that we have
too large an electronic bandgap with U(Ni) = 5 eV, which is
inconsistent with the experiment. On the other hand, including
U at the oxygen site improves the results significantly. As we
discussed above, U(O) does not affect the phonon spectrum
which agrees well with the experimental data. U(O) also does
not open a gap. Hence, basically using U(O) of the order of
4.0 eV, we can get exchange parameters that are consistent with
experiment and at the same time we still have a good phonon
spectrum and correct bandgap. Interestingly, with U(O), it is
very easy to get the correct value for the ratio J1a/J2a , which
was not the case without U(O). In table 3, we also present a
solution where we have both U(Ni) and U(O) which seems to
give the best agreement with the experiment.

From table 3, it is clear that the energy scale of the
superexchange interactions depends strongly on the value
assigned to U . However, a nice result is apparent: the
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d(Ni1-Ni2)=2.96 Å
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(b)
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Figure 6. The most important (i.e. the largest) superexchange
interactions between Ni ions according to LDA + U calculations
listed in table 3.

ordering (from largest magnitude to smallest magnitude) of
the exchange interactions is independent of the choice of U .
Another nice result concerns how the exchange interactions are
consistent with the observed magnetic structure. The magnetic
structure of both the commensurate and incommensurate
phases [4] is such that the spins along the b and c directions are
antiferromagnetically arranged. In [4] a tentative assignment
of values for the exchange integrals was given, assuming
that this antiferromagnetic arrangement was caused by NN
antiferromagnetic interactions along the b and c directions.
With this assumption, the correct value of the Curie–Weiss
constant � could only be obtained using rather small values
of the exchange interactions in the b and c directions. The
calculations of the present paper resolve such difficulties:
the antiferromagnetic arrangement along the b axis is not
generated by an antiferromagnetic interaction between spins
s1 and s9 (this interaction is very weak), but is rather due to
a much stronger ferromagnetic interaction between spins s1
and s5 which, in combination with the s5–s9 antiferromagnetic
interaction, has the effect of forcing spins s1 and s9 to be
anti-parallel. Since the contribution to � depends on the
algebraic sum of the exchange interactions, the fact that one of
the dominant interactions is ferromagnetic is consistent with
larger (and more satisfactory) values of the other exchange
interactions.

Figure 6 shows some of the J values that we determined as
the major superexchange interactions. In addition to the major
J1a and J2a interactions along the spine chain, surprisingly
we find that there are strong interactions between s1–s5 (see
figure 1 for spin numbering) and s1–s9. Note that the s1–s5
interaction is between two adjacent Kagomé planes while s1–
s9 is within the same Kagomé plane.

After having determined the most important superex-
change interactions, the next step is to find out how they cou-
ple with the B2u phonons, in particular the b9 mode that we
discussed above. Currently we are calculating the phonon
derivatives of the superexchange interactions listed in table 3
from which we hope to identify the spin–phonon coupling. By
plotting dJ/dQn , where Qn is the amplitude of the nth zero
wavevector phonon mode, we should be able to extract both
linear and quadratic coupling. Needless to say, these sorts of
calculations are computationally very expensive and will be
published elsewhere. In this review, instead of giving actual
phonon derivatives of J , in the next section, we will discuss
qualitatively how spin–phonon coupling takes place in mul-
tiferroics via coupling which involves two spin operators (to
preserve time reversal symmetry) and either one (QSS) or two
phonons (QQSS) as written in equations (12), (14) and (15).

5. Magnon–phonon interaction

Here we make some qualitative remarks about the spin–phonon
interaction in multiferroics, which we write as Vsp ≡ V (3) +
V (4), where

V (3) =
∑

rr′

∑

αβγ

M (1)
αβγ (r, r′)Sα(r)Sβ(r′)

× [uγ (r) − uγ (r′)] (10)

and

V (4) =
∑

rr′

∑

αβγ δ

M (2)
αβγ δ(r, r′)Sα(r)Sβ(r′)

× [uγ (r) − uγ (r′)][uδ(r) − uδ(r′)], (11)

where M (n) is the nth gradient of the exchange tensor with
respect to ionic displacements and uγ (r) is the γ component
of the displacement of the ion from its equilibrium position
at r. All displacements are taken relative to the paraelectric
and paramagnetic phase. To see the effect of these terms we
construct an effective quadratic Hamiltonian obtained using a
Hartree decoupling of the above interactions, which involves
replacing operators or products of operators by their thermal
expectation values indicated by 〈· · ·〉. In so doing we note that
〈uα(r)〉 is very small—in fact, so small that in NVO no direct
observation of this quantity has been made, even though its
non-zero value is guaranteed by the existence of a spontaneous
polarization. Accordingly, we replace V (3) by

V (3)
eff =

∑

rr′

∑

βγ

Nβγ (r, r′)Sβ(r′)[uγ (r) − uγ (r′)], (12)

where

Nβγ (r, r′) =
∑

α

[M (1)
αβγ (r, r′)〈Sα(r)〉 + M (1)

βαγ (r′, r)〈Sα(r′)〉].
(13)

The effect of V (3)

eff is [27–31] to (a) shift the spectral
weight from optical phonons into low frequency magnons
and (b) concomitantly shift the energies of these two coupled
excitations. The shift in spectral weight is such that the change
in the IR absorption cross section due to V (3)

eff is of the order
I0[V (3)

eff /ωp]2 ∼ I0[N2/(mω3
p)], where m is an ionic mass,
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ωp is a phonon energy (assumed to be large compared to the
magnon energy) and I0 is the IR absorption cross section in the
absence of V (3)

eff . The magnitude of the energy shift (upward
for the phonon and downward for the magnon) is of the order
N2/(mω2

p). Thus, as the coupling is seen to increase with
decreasing temperature, the energy shifts should also increase.
For Eu0.75Y0.25MnO3 [29] the relationship between the energy
shifts and the transfer of spectral weight (as measured by the
optical absorption or the effect on the static dielectric constant)
is not seen: the observed 5 cm−1 optical phonon frequency
shift is not consistent with the 20 cm−1 predicted by the model
of [28] when scaled to explain the decrease in spectral weight
as it should if only V (3) were operative [29]. One is therefore
led to consider the effects of V (4), again within a Hartree
decoupling scheme. The term

V (4,a)

eff =
∑

rr′

∑

αβγ δ

M (2)
αβγ δ(r, r′)Sα(r)Sβ(r′)

× 〈[uγ (r) − uγ (r′)][uδ(r) − uδ(r′)]〉 (14)

will induce a very slight temperature dependence into the
exchange coupling. The term

V (4,b)
eff =

∑

rr′

∑

αβγ δ

M (2)
αβγ δ(r, r′)〈Sα(r)Sβ(r′)〉

× [uγ (r) − uγ (r′)][uδ(r) − uδ(r′)] (15)

is more important, as discussed in [32], because this term
induces a dependence of the phonon dynamical matrix on the
spin ordering, which gives rise to an observable temperature
dependence of the optical phonon frequencies. Note that this
term does not produce a linear spin–phonon coupling (we
assume 〈u〉 to be zero), and hence it does not shift the spectral
weight. But it does shift the energies by an amount of the order

M (2)〈S〉2

mωp
, (16)

where ωp is the phonon energy in the absence of spin–phonon
coupling. Note that, although this term is proportional to the
second gradient of the exchange tensor, it leads to an energy
shift at first order in perturbation theory, whereas the effect of
V (3)

eff only appears at second-order perturbation theory. In fact,
the ratio of the quartic energy to the cubic energy is of the order
ωp[∂2 J/∂u2]/[∂ J/∂u]2. There is an ancient empirical rule of
thumb that J is proportional to r−10 [33], which would give
this ratio to be ωp/J , which is of the order of 10. Accordingly,
it is suggested [34] that this energy shift can easily account
for the 15 cm−1 discrepancy mentioned above for the optical
phonon in Eu0.75Y0.25MnO3 [29].

6. Conclusions

In this review we have presented a detailed study of the zone-
center phonons and the superexchange integrals calculated
within the LDA + U approach. The aim of our study is
to determine which of the zone-center phonons are relevant
and which superexchange parameters are important for the
observed magnetic structure and spontaneous polarization in
NVO. This work will therefore set the stage for a separate

quantum calculation of the derivatives of the exchange tensor
with respect to atomic displacements.

We compared our calculations with available inelastic
neutron and polarized IR measurements and obtained excellent
agreement for both the energies and the intensities. We
identified one particular mode near 80 meV which induces
significant dipole moment along the b axis. This mode
also has a direct effect on the Ni–O–Ni bond angle and
therefore is expected to couple strongly with the magnetic
interactions. Using the calculated Born-effective charges and
the eigenvectors we conclude that the required distortion to
induce the observed dipole moment is small (0.001 Å) and
would be difficult to observe directly by neutron powder
diffraction.

This work, summarizing vibrational mode assignments,
their symmetries and the predicted contribution of b-polarized
displacements to the spontaneous polarization, will surely
stimulate efforts to explore magnetic ordering-induced lattice
distortions in Ni3V3O8, as well as in the quasi-isostructural Co
and Mn analogs.
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